1、【题目】某部门在一次联欢活动中共设26个奖,奖品均价为280元,其中一等奖单价为400270元,一等奖的个数为()
选项:
A.6
B.5
C.4
D.3
E.2
答案:
解析:
1、【题目】甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇,最后速度均1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇,则A,B两()
选项:
A.5.6公里
B.7公里
C.8公里
D.9公里
E.9.5公里
答案:
D
解析:
设AB两地距离为x公里。甲速度为V1,乙速度为V2
甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇
则有公式:X/(V1+V2)=1,即X=V1+V2……①
速度均提高了1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇
则有公式:2X/(V1+V2+3)=1.5……②
将①带入②,的2X/(X+3)=1.5,∴X=9
所以答案为D
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
解析:
1、【题目】若几个质数的乘机为770,则这几个质数的和为()
选项:
A.85
B.84
C.128
D.26
E.25
答案:
E
解析:
770=7*110=7*11*10=7*11*5*2
所以7,11,5,2为770的质数之乘。质数和=7+11+5+2=25,所以答案选E
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
A
解析:
做辅助线FG⊥CD,垂足为G,链接AG
由题意可知,FG∥CC,DG=?DC=1,AD=2,有勾股定理得AG=√5,AF=√(FG?+AG?)=3
所以答案选A
1、【题目】如图1,已知AE=3AB,BF=2BC,若三角形ABC的面积为2,则三角形AEF的面积为()
选项:
A.14
B.12
C.10
D.8
E.6
答案:
B
解析:
做辅助线AD⊥BF,垂足为D,AD即△ABC和△ABF的高。
∵S△ABC=2=?BC*AD
由题知2BC=FB
∴S△ABF=?FB*AD=BC*AD=4
做辅助线FG⊥AE,垂足为G,FG即△AFE和△AFB的高。
∵3AB=AE,S△ABF=?AB*FG=4
S△AFE=?AE*FG=?*3AB*FG=12
所以答案为B
1、【题目】函数f (x, y, z)=x2 y+ z2 在点 (1,2,0) 处沿向量 r/n=(1,2,0)的方向导数为()。
选项:
A.12
B.6
C.4
D.2
答案:
D
解析:
暂无解析
1、【题目】如图2,圆A与圆B的半径为1,则阴影部分的面积为()
选项:
A.S四边形ABCD-S扇=2S扇-2S△ACD=(2/3)π-(√3)/2
B.S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
C.2S扇-S四边形ABCD=S扇-S△ACD=(2/3)π-(√3)/2
D.2S扇-S四边形ABCD=S扇-2S△ACD=(2/3)π-(√3)/2
E.2S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
答案:
E
解析:
做辅助线,两圆相交C、D两点(C在上面,D在下面)。链接AB、CD、AC、AD。
和CD交于点F。
由扇形公式得知:S=(n/360)πr?,n是扇形圆心角,r是圆半径。
两个圆的半径为1,即AB=AC=CB=1,△ABC为等边三角形。同理,△ABD为等边三角
CAB=60°,∠CAD=120°。S扇形=(1/3)πr?=(1/3)π
由勾股定理得CD=√3,S△ACD=(?)CD*AF=(√3)/4
∴阴影部分面积=2S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
所以答案选E
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
C
解析:
分类讨论题目。投掷出正面的概率为(1/2),投掷出反面的概率为(1/2)。
若投掷第一次正面向上停止,概率为(1/2),
投掷两次,一次反面一次正面,概率相等,不考虑。
若投掷三次,则第一次定为反面,后两次为正面,概率=(1/2)*(1/2)*(1/2)=1/8
每种情况的概率相加1/2+1/8=5/8
所以答案选C
1、【题目】某公司的员工中,拥有本科毕业证、计算机登记证、汽车驾驶证得人数分别为130,90.又知只有一种证的人数为140,三证齐全的人数为30,则恰有双证得人数为()
选项:
A.45
B.50
C.52
D.65
E.100
答案:
B
解析:
暂无解析
1、【题目】设A,B为随机事件,若0
选项:
答案:
解析:
1、【题目】某容器中装满了浓度为90%的酒精,倒出1升后用水装满,摇匀后又倒出1升,再用40%,则该容器的容积是
选项:
A.2.5升
B.3升
C.3.5升
D.4升
E.4.5升.
答案:
解析:
1、【题目】某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮换到4个部门的其他()
选项:
A.3种
B.6种
C.8种
D.9种
E.10种
答案:
D
解析:
不看要求总共有4*3*2*1=24种方案
四个人都分到自己部门的方案有1种
三个人分到自己部门的方案有C(3,4)=4种
两个人分到自己部门的方案有C(2,4)=6种
一个人分到自己部门的方案有C(1,4)=4种
每位经理必须轮换到4个部门的其他部门任职,则不同的轮岗方案有24-1-4-6-4=9种
所以答案选D
1、【题目】已知直线l是圆X?+Y?=5在点(1,2)处的切线,则l在y轴上的截距是()
选项:
A.2/5
B.2/3
C.3/2
D.5/2
E.5
答案:
解析:
1、【题目】若函数,x>0在x=0连续,则()。
选项:
A.ab=1/2
B.ab=-1/2
C.ab=0
D.ab=2
答案:
解析: