1、【题目】函数f (x, y, z)=x2 y+ z2 在点 (1,2,0) 处沿向量 r/n=(1,2,0)的方向导数为()。
选项:
A.12
B.6
C.4
D.2
答案:
D
解析:
暂无解析
1、【题目】如图2,圆A与圆B的半径为1,则阴影部分的面积为()
选项:
A.S四边形ABCD-S扇=2S扇-2S△ACD=(2/3)π-(√3)/2
B.S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
C.2S扇-S四边形ABCD=S扇-S△ACD=(2/3)π-(√3)/2
D.2S扇-S四边形ABCD=S扇-2S△ACD=(2/3)π-(√3)/2
E.2S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
答案:
E
解析:
做辅助线,两圆相交C、D两点(C在上面,D在下面)。链接AB、CD、AC、AD。
和CD交于点F。
由扇形公式得知:S=(n/360)πr?,n是扇形圆心角,r是圆半径。
两个圆的半径为1,即AB=AC=CB=1,△ABC为等边三角形。同理,△ABD为等边三角
CAB=60°,∠CAD=120°。S扇形=(1/3)πr?=(1/3)π
由勾股定理得CD=√3,S△ACD=(?)CD*AF=(√3)/4
∴阴影部分面积=2S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
所以答案选E
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
A
解析:
做辅助线FG⊥CD,垂足为G,链接AG
由题意可知,FG∥CC,DG=?DC=1,AD=2,有勾股定理得AG=√5,AF=√(FG?+AG?)=3
所以答案选A
1、【题目】若函数,x>0在x=0连续,则()。
选项:
A.ab=1/2
B.ab=-1/2
C.ab=0
D.ab=2
答案:
解析:
1、【题目】某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮换到4个部门的其他()
选项:
A.3种
B.6种
C.8种
D.9种
E.10种
答案:
解析:
1、【题目】如图1,已知AE=3AB,BF=2BC,若三角形ABC的面积为2,则三角形AEF的面积为()
选项:
A.14
B.12
C.10
D.8
E.6
答案:
解析:
1、【题目】某工厂在半径为5cm的球形工艺品上镀上一层装饰金属,厚度为0.01cm,已知装20cm的正方体,则加工10000个该工艺品需要多少个这样的正方体()
选项:
A.2
B.3
C.4
D.5
E.20
答案:
解析:
1、【题目】已知{an}为等差数列,且a2-a5+a8=9,则a1+a2+……+a9=()
选项:
A.27
B.45
C.54
D..81
E.162
答案:
解析:
1、【题目】设 A,B 为随机事件,若 0
选项:
答案:
A
解析:
暂无解析
1、【题目】设来自总体的简单随机样本,记则下列结论中不正确的是().
选项:
A.
B.
C.
D.
答案:
B
解析:
暂无解析
1、【题目】甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则()。
选项:
答案:
解析:
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
解析:
1、【题目】某公司的员工中,拥有本科毕业证、计算机登记证、汽车驾驶证得人数分别为130,90.又知只有一种证的人数为140,三证齐全的人数为30,则恰有双证得人数为()
选项:
A.45
B.50
C.52
D.65
E.100
答案:
B
解析:
暂无解析
1、【题目】甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇,最后速度均1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇,则A,B两()
选项:
A.5.6公里
B.7公里
C.8公里
D.9公里
E.9.5公里
答案:
D
解析:
设AB两地距离为x公里。甲速度为V1,乙速度为V2
甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇
则有公式:X/(V1+V2)=1,即X=V1+V2……①
速度均提高了1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇
则有公式:2X/(V1+V2+3)=1.5……②
将①带入②,的2X/(X+3)=1.5,∴X=9
所以答案为D